

LuSql: (Quickly and easily)Getting your
data from your DBMS into Lucene

Glen Newton
CISTI Research, CISTI NRC

code4lib 2009
Providence Rhode Island Feb 24 2009

Outline

• What is LuSql?
• Context
• Examples
• Performance & comparisons
• Next version

Context

• CISTI == Canada National Science Library
• Digital Library Research Group
• Heavy text mining, knowledge discovery tools, information

visualization, citation analysis, recommender systems
• Large local text collection:

– 8.4M PDFs, full text & metadata (~700GB)
– Full text on file system
– Metadata in MySql

• Team of 4: Lucene expert; 3 needing to use Lucene
• Daily creation of some experiment/domain/foo – specific large

scale Lucene index

LuSql Rationale

• Need for low barrier, high performance, flexible tool for Lucene
index creation

• Choice
– SOLR
– DBSight
– Lucen4DB.net
– Hibernate Search
– Compass

• All one or more of:
– Overly complicated for non-Lucene / non-Java / non-XML / non-

framework users
– Performance/scalability issues
– Not Open Source Software (OSS)

LuSql

• User knowledge:
– Knowledge of SQL
– Knowledge of their database and tables
– Ability to set the Java CLASSPATH in a command-line shell
– Ability to run a command line application

LuSql Command Line
Arguments

– Create or append
– SQL
– JDBC URL
– # records to index
– Lucene Analyzer class
– JDBC driver class
– Indexing properties, global or by field
– Global term value (i.e. all documents have "source=cat")
– Lucene RAM buffer size
– Stop word file
– Lucene index directory
– Multithreading toggle, #threads
– Pluggable Document filter
– Subqueries

Examples

java jar lusql.jar -q "select * from Article where
volumeYear > 2007" -c
"jdbc:mysql://dbhost/db?user=ID&password=PASS" -n
5 -l tutorial -I 211 -t

Index Term Properties

• Index: Default:TOKENIZED
– 0:NO
– 1:NO_NORMS
– 2:TOKENIZED
– 3:UN_TOKENIZED

• Store: Default:YES
– 0:NO
– 1:YES
– 2:COMPRESS

• Term vector: Default:YES
– 0:NO
– 1:YES

Example 2: Complex
Join

java -jar lusql.jar -q "select Publisher.name as
pub, Journal.title as jo,Article.rawUrl as text ,
Journal.issn, Volume.number as
vol,Volume.coverYear as year, Issue.number as
iss, Article.id as id, Article.title as ti,
Article.abstract as ab, Article.startPage as
startPage, Article.endPage as endPage from
Publisher, Journal, Volume, Issue, Article where
Publisher.id = Journal.publisherId and Journal.id
= Volume.journalId and Volume.id=Issue.volumeId
and Issue.id = Article.issueId" -c "jdbc:mysql
://dbhost/db?user=ID&password=PASS" -n 50000 -l
tutorial_2

Example 2: Large Scale
Index Propertries

• 6.4M articles (only metadata)
• 20 fields, including abstract
• Indexing time: 1h 34m
• Index size: 21GB

Example 3: Complex
Join

java -jar lusql.jar -q "select Publisher.name as
pub, Journal.title as jo,Article.rawUrl as text ,
Journal.issn, Volume.number as
vol,Volume.coverYear as year, Issue.number as
iss, Article.id as id, Article.title as ti,
Article.abstract as ab, Article.startPage as
startPage, Article.endPage as endPage from
Publisher, Journal, Volume, Issue, Article where
Publisher.id = Journal.publisherId and Journal.id
= Volume.journalId and Volume.id=Issue.volumeId
and Issue.id = Article.issueId" -c "jdbc:mysql
://dbhost/db?user=ID&password=PASS" -n 50000 -l
tutorial_2

Example 4: Out-of-band
document manipulation

• Plugin architecture allowing arbitrary manipulations of Documents
before they go into the index

• Implement DocFilter interface
• Add filter class at command line:

– -f ca.nrc.cisti.lusql.example.FileFullTextFilter
– Looks in metadata field for PDF location in file system; finds

corresponding .txt file; reads file & adds to Document

Example 4: Large Scale
Index Properties

• 6.4M articles (metadata & full-text), ~600GB PDFs
• 21 fields, including abstract & full-text
• Indexing time: 13h 46m
• Index size: 86GB

Comparison to SOLR

• SOLR 1.4 November build:
– Using DataImportHandler, with all defaults

• Lucene 2.4
• LuSql 0.90

Hardware

• Indexing and database machines:
– Dell PowerEdge 1955 Blade server56
– CPU: 2 x dual-core Xeon 5050 processors with 2x2MB cache, 3.0

Ghz 64bit
– Memory: 8 GB 667MHz
– Disk: 2 x 73GB internal 10K RPM SAS drives

• Both machines attached to:
– Dell EMC AX150 storage arrays
– 12 x 500 GB SATA II 7.2K RPM disks
– via:
– SilkWorm 200E57 Series 16-Port Capable 4Gb Fabric Switch

Software

• MySql: v5.0.45 compiled from source.
• gcc: gcc version 4.1.2 20061115 (prerelease) (SUSE Linux)
• Java: java version 1.6.0 07 SE Runtime Environment (build 1.6.0

07-b06) Java HotSpot(TM) 64-Bit Server VM (build 10.0-b23,
mixed mode)

• Operating System
– Linux openSUSE 10.2 (64-bit X86-64)
– Linux kernel: 2.6.18.8-0.10-default #1 SMP

Comparison to SOLR

Comparison to SOLR

Acknowledgments

• Greg Kresko, Andre Vellino, Jeff Demaine, various LuSql users

LuSql 0.95 in
development

• Re-architected to have pluggable drivers for both input & output
• Read drivers:

– JDBC, Lucene, Minion, BDB. ehcache, SolrJ, RMI, Terrier
• Write drivers:

– JDBC, Lucene, Minion, BDB. ehcache, SolrJ, text, XML, RMI,
Terrier

• For large volumes, concurrent multiple indexes merged at end

Questions

• Glen Newton glen.newton@nrc-cnrc.gc.ca

